
The Read-Modify-Write Problem
(And How to Avoid It)

Hector Martín, 11-01-2007

Almost every PIC programmer has had to deal with the Read-Modify-Write (RMW) problem at one point 
or another. Nowadays, it is (or should be) documented in most PIC tutorials and books, but the problem 
keeps coming up. The RMW problem could almost be considered a design flaw in the mid-range PICs 
(PIC16Fxxx) and programmers had to work around it using software techniques, but nowadays the 
PIC18Fxxxx series has built-in support to avoid it. Here's how you can use the new features of PIC ports 
to never have to deal with the issue.

To understand the RMW problem, first we have to realize that PIC Special Function Registers (SFRs) are 
not necessarily registers, in the memory storage sense. Indeed, they are accessed like memory, but there is 
no guarantee that there actually is some memory (or even a set of flip-flops) behind them. In general, a 
register is simply a location in the data address space that accepts data written to it and returns data when 
read. These two sets of data may or may not have anything to do with each other, and in some cases even 
the mere action of reading a register will cause changes to it (this is the case with registers like RCREG, 
which is actually a window into an internal data queue: reading it advances to the next element in the 
queue).

The PORT registers are one of those registers. In fact, 
it should be obvious: when we read a PORT register, 
for the pins set to inputs, we will read the value that is 
being read by that pin. To the right is the standard 
schematic for a PIC port pin. Notice that the value 
read when we read the port pin (RD Port) comes from 
a latch fed by the port pin input buffer directly. 
Always. Even when then pin is set as an output. That 
means that, no matter what, when we read the PORT 
register, we will be reading the value present on the 
physical pin on the PIC, just as if we were to hook a 
multimeter to it and turn the resulting reading into a 
binary '1' or a '0'.

This may not seem relevant: why would an output pin 
ever be at a voltage that contradicts the value that was 
written to it? The answer lies in the output buffer, 
marked with an arrow. The PIC pins have limits, and, 
as specified in the datasheet, the maximum current 
that a PIC pin can source or sink is 25mA. That's not 
a lot of current. It wouldn't take a lot of drive on the 
outside to force a pin to the opposite state, and the PIC's output buffer would not be able to keep the pin 
at its intended state. In the long term, this can destroy the buffer. In the short term however, this is 
expected and it will happen when there are capacitive loads on the pin. For example, if a capacitor is 
attached between a pin and ground, it will take a short while to charge when the pin is turned on. While it 
is discharged, a capacitor acts like a short circuit, forcing the pin to a '0' state (even though we wrote a '1' 
to it) and, therefore, a read of the PORT register will return a '0' even though the Data Latch is at '1'.

25mA



Now, we clearly can't trust the data read from the PORT 
register when a pin is set as an output. However, up to 8 
pins are accessed using the very same PORT register on a 
PIC. The PIC's data path is 8 bits wide, and therefore that 
is the smallest unit that can be read or written by the PIC. 
To read a pin, we must read all pins. To write to a pin, we 
must write to all pins. How do instructions like BSF and 
BCF work, when they are only supposed to change one 
bit? Look at the Q Cycle Activity in the instruction 
description to the left. On Q2 the register is read, on Q3 
the data is modified (this happens inside the PIC's 
temporary data registers), and on Q4 the entire register is 
written with the new data. We just mentioned how register 
reads may or may not have something to do with register 
writes, and we've showed how this is the case with the 
PORT registers, but BSF assumes that the data read from a 
register is indeed the proper data that should be written to 
it for bits that are not to change.

Consider the following program fragment:

1 BSF PORTB, 0
2 BSF PORTB, 1

Assume that PORTB is initially all zero (00h), and that all pins are set to output. Let's say we hook up a 
capacitor to pin RB0 (and that capacitor is initially discharged). What happens?

● 1 Q1: BSF instruction is decoded
● 1 Q2: PORTB is read. Result: 00000000b
● 1 Q3: The data is modified to set the bit. Result: 00000001b (this is stored inside a temporary 

internal register in the PIC)
● 1 Q4: PORTB is written with the new data, 00000001b. The output driver for RB0 turns on, and 

the capacitor starts to charge at 25mA.
● 2 Q1: BSF instruction is decoded
● 2 Q2: PORTB is read. Since the capacitor is still charging, the voltage at RB0 is still low and 

reads as a '0' (since we're reading from the pins directly, not from the data register). Result: 
00000000b

● 2 Q3: The data is modified to set the bit. Result: 00000010b
● 2 Q4: PORTB is written with the new data, 00000010b. The output driver for RB1 turns on, but 

the driver for RB0 turns back off!

Therefore, the second BSF unintentionally undoes the actions of the first if the outside conditions are 
right. How do we avoid this? Easy. Use the LAT registers when writing to ports. Writing to a LAT register 
is equivalent to writing to a PORT register, but reads from LAT registers return the Data Latch data, 
regardless of the state of the actual pin. In other words, Read-Modify-Write instructions like BSF will 
operate correctly. The rule of thumb: never use PORT registers when writing to pins. Use LAT for 
writing, and PORT for reading:

1 BSF LATB, 0
2 BSF LATB, 1


